第21回自動認識総合展出展者プレゼンテーション

RFIDアライアンス UHF帯ICタグ新製品紹介

2019. 9.12

株式会社RFDアライアンス

AGENDA

RFIDアライアンス会社紹介

- ① エイリアンテクノロジー社 新型IC Higgs9 新型インレイ
- ② Datamars社ランドリータグ タグの改良タグの用途拡大
- ③ まとめ

】株式会社RFIDアライアンス

- 創業 2008年8月20日
 本社 千葉県浦安市
- RFID関連資材の輸入、在庫オペレーション そのままで直ぐに使える便利なRFID資材を紹介
- 小売(エンドユーザ) および 卸売(商社、Sler等)
 通信販売 ホームページから(全国区)
 通常取引 (見積→受注→出荷→回収)
 代金引換 または 当月末締め翌月末現金
- 評価用サンプルを提供 早い、安い、少量にも対応

株式会社 RFIDアライアンス

お蔭様でRFIDアライアンスは創業十一周年。 RFIDタグでIoTのインフラを支えてまいります。

English

HOME What's RFID RFID SHOP COMPANY PRIVACY CONTACT

第21回自動認識総合展に出展します。 2019. 9. 11-13 東京ビッグサイト南ホール 4 F 小間番号 A-72

Information

タイヤのトレッドに貼り付けるUHF帯シールラベルALN-9874-WRW"TREAD"を新発売。 食器、陶器、衛生陶器、ガラスなどの高誘電率の材料にも適応 →ALN-9874 TREAD

書き換えのできるリード/ライト型UHF帯ランドリータグ(RWタイプ)を新発売。 ユーザー様のIDをエンコードするサービスも始めました。 → UHF帯ランドリータグ

RFIDの基礎 JAISA資料

IC夕グの使い方ver 2019.9

カタログコーナー 2019.7

エイリアンテクノロジー社

創立 1997年 ベンチャー企業

本社 米国カリフォルニア州サンノゼ(シリコンバレー)

2003年 書き換え型UHF帯RFIDタグ(EPCクラス1Gen1)を世界で

最初に開発。ウオルマート等に供給。RFIDの導入に貢献。

2006年 EPCクラス1Gen2チップ、タグ、リーダーを発売。

2014年 中国資本から3500万ドルの投資を受け入れ(51%)

現在 UHF帯RFID用ICチップ、インレイ、リーダーの製造販売、

RFIDソリューションセンター(RSC)においてRFIDトレーニング、 コンサルティング、EPCグローバル認証を提供するRFID総合企業

米国本社

新型IC Higgs9

エイリアンテクノロジー EPCクラス1標準 IC開発のマイルストーン

2000年 MIT Auto-IDセンターに参加 世界最初の書き換え型UHF帯ICタグ 2003年 EPCクラス1Gen1標準IC"Quark"を開発 EPCクラス1Gen2標準の作成に参加 2005年 "Qプロトコール"等のIPで貢献 EPCクラス1Gen2標準 IC "Higgs2"を発売 2006年 2008年 同"Higgs3"を発売 同"Higgs 4"を発売 2011年 2016年 Higgs4の後継IC "HiggsEC"を発売 Higgs3の後継IC "Higgs9"を発売 2019年 (最初の"Quark"から9番目のIC)

Higgs9の特長

• Higgs3後継品 チップサイズ縮小

メモリ容量拡大

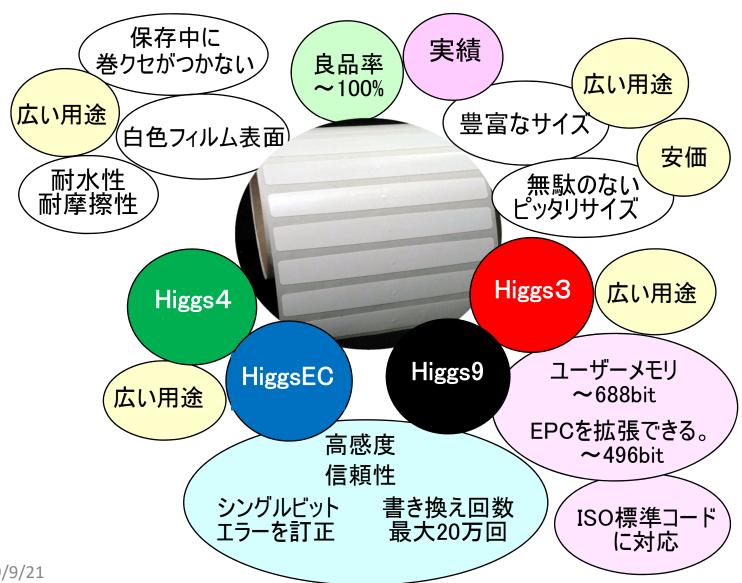
• 信頼性向上

メモリ構造(UTID)

HiggsシリーズIC 仕様、性能比較

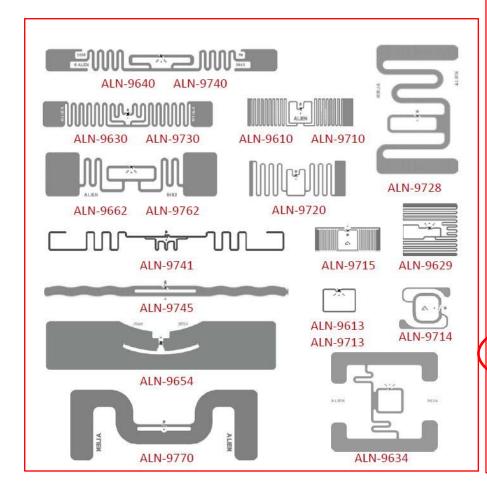
	Higgs3	Higgs9 new	Higgs4	HiggsEC new			
シリーズ品番	ALN-96xx	ALN-99xx	ALN-97xx	ALN-98xx			
読み取り感度	6-20dBm	-22.5dBm	−20.5dBm	-22.5dBm			
書き込み感度	-13.5dBm	−18dBm	−17dBm	−19dBm			
チップ個数/ウエハー	58K	90K	80K	100K			
チップサイズ(ミクロン)		566 x 453 = 0.256mm2	589x589 = 0.346mm2	490 x 479 = 0.234mm2			
EPC メモリ (bits)	max 480	max 496	max128	max128			
ユーザーメモリ (bits)	512	688	128	128			
UTIDメモリ(bits)	64	48	64	48			
Kill Password	32	32	32	32			
Access Password	32	32	32	32			
書き込み回数	100K	200K	100K	200K			
データ保持期間	50 Years						
動作温度範囲	−50°C ~ +85°C						

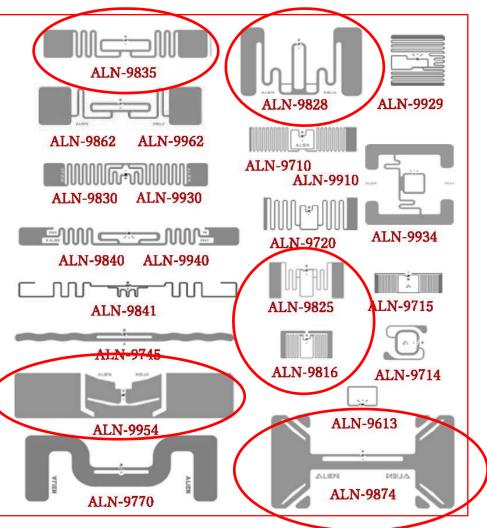
2019/9/21


HiggsシリーズIC メモリ構造

ALIE	Ν.												
TID メモリ EPC Higgs3 メモリ		96bit		E2	00 3	34 1	01	2F	F4	00 0	4 18	3 <u>F</u> 4	4 4D
	メモリ		ISO1	5963	/メーカ	→ モ-	デル		UTII	0 64	bit		
		6C E9	30 00	E2	00	10 1	8 68	07	01	58 0	1 90	<u>F4</u>	4 <u>D</u>
		CRC	PC		ユニー	ークな	EPC96	5bit		UTID末	킽16bit	と関連	重付け
メモリ メモリ		96bit		E2	00	34	14 <mark>0</mark> 1	2 A	01	00 !	50 3	E E	B 16
	メモリ		ISO1	5963	/メーカ	∀ ₹	デル	U [.]	TID	64bit	,		1
Higgs4		D3 85	30 00	E2 (00 3	1 5	2 56	CE	C5	B <u>0 </u>	<u>50 3</u>	EE	B 16
メモリ	メモリ	CRC	PC		ユニ・	ークな	EPC9	6bit		大 DITU	尾 38k	اعtic	関連付け
TID HiggsEC メモリ	96bit		E	2 00	38	12 6	0 0	0 60) 1 <u>5</u>	00 9	5 E	<u> 3 23</u>	
		ISO1	L5963	/メー	カーノモ	デル			JTID	48bi	t	\uparrow	
EPC メモリ Higgs9		FD E	30 0	0 E 2	2 00	42	02 3	D F	0 6	0 1 <u>5</u>	00 9	9 5 I	E3 23
	メレジ	CRC	PC		ユニ・	ークな	EPC9	6bit		大DITU	E尾38l	الےtic	関連付け

2019/9/21




UHF帯シールラベルの品種拡大

エイリアンテクノロジー 新型インレイ 118年 - 2019年

2018年

新型シールラベル発売予定

• ALN-9874-WRW TREAD(販売)

• ALN-9954-WRW G(販売)

ALN-9940-WRW Squiggle

ALN-9962-WRW SH

ALN-9930-WRW Squiglette

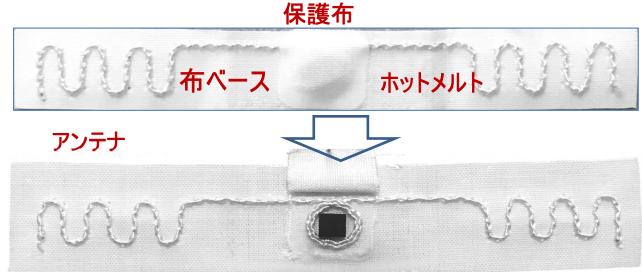
• ALN-9934-WRW 2x2

ALN-9929-WRW SQ

ALN-9916-WRW Pearl

ALN-9874-WRW "TREAD"

- 自動車タイヤ用のUHF帯シールラベル タイヤのトレッドに沿って、貼り付ける
- 陶器、ガラス用タグとしても最大の 読み取り距離を達成。



UHF帯ランドリータグ FT401

FT401タグの改良点

2018年

ICモジュールの保護布の接着が不十分で剝れやすい。

2019年

ICモジュールの保護布を改良。基布との接着を強化。 全体の厚みを若干薄くした。

FT401タグの用途拡大

品番	サイズmm	リードオンリー型	リードライト型
FT401-ST スリムタイプ	7x10x1.3 0.3g	FT401-ST(RO)	FT401-ST(RW)
FT-401-PA 熱圧着型	7x15x1.3 0.4g	FT401-PA(RO)	FT401-PA(RW)

RO型はデータマース発行のIDを使用。 RW型はEPCにユーザー発行のIDをエンコードして使用。 RFIDアライアンスはエンコードサービスを提供

ICタグを上手に使って RFIDの可能性を追求しましょう。

http://www.rfid-alliance.com

ご質問はこちらへ info@rfid-alliance.com